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Abstract
A double-space parking problem is studied for a parking lot of size M accommodat-
ing both private cars and buses. Upon arrival, a private car is either admitted to the 
parking lot, occupying a single spot, or waits in line until a spot becomes available. 
An arriving bus occupies double spots and is admitted only if there are at least two 
free spots.  It balks from the system otherwise. The inflow is governed by two inde-
pendent Poisson streams, with rates �

C
 for cars and �

B
 for buses. The sojourn time of 

a car or a bus inside the parking lot is exponentially distributed with parameters �
C
 

and �
B
 , respectively. The problem is formulated as a QBD process and analyzed via 

matrix geometric methods. Various performance measures are calculated, including 
mean number of cars inside, and outside, the parking lot; mean number of buses 
in the system; and the probability that an arriving bus is blocked. The dichotomy 
whether to split the M-spot lot into two separate lots, one for cars, the other for 
buses, is studied and the optimal split is calculated. Numerical results are presented 
via graphs. Finally, it is shown that from the point of view of the parking lot owner, 
it is equivalent to either charge a fixed entrance fee or charge per-time unit of usage.
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1 Introduction

This paper investigates the queueing problem of a parking lot serving two types of cars: 
private cars and buses. A car occupies a single parking spot, while a bus requires dou-
ble parking spots. This type of problem falls into the area of multi-server queueing sys-
tems in which different customers require a random number of servers serving simul-
taneously. Such problems have been addressed extensively in the literature [see, e.g., 
(Brill and Green 1984; Fletcher et al. 1986; Federgruen and Green 1984; Green 1980, 
1981; Kaufman 1981; Rumyantsev and Morozov 2017)]. The studied models have 
been applied in various areas such as shared resource environment [see, e.g., (Kaufman 
1981)], satellite communication systems operating under a frequency division multi-
ple access scheme (FDMA), and under time division multiple access scheme (TDMA) 
for satellites (Fletcher et al. 1986). An M/M/m-type model where servers are assigned 
to the same customer but do not end service simultaneously is discussed in Green 
(1980), where analytic expressions for the distribution of a customer’s waiting time in 
the queue, as well as the distribution of the number of busy servers, are obtained. The 
same model is analyzed in Federgruen and Green (1984), assuming that each sever has 
a general service time distribution. The queue-length distribution is approximated. A 
closed queueing system with a fixed number of customers, where customers who fin-
ish service are fed back to the end of the queue, is studied in Fletcher et al. (1986), and 
the distribution of the number of busy servers, as well as queue-length distribution, are 
analyzed. Stability condition for a multi-server model with simultaneous service was 
derived in Rumyantsev and Morozov (2017).

The current paper concentrates on the analysis of the so-called double-space parking 
problem. Specifically, we consider a parking lot having M parking spots that accom-
modates both cars and buses. The problem is formulated (Sect. 2) as a quasi-birth-and-
death (QBD) process with a two-dimensional state space. One dimension counts the 
number of buses inside the parking lot; the other counts the total number of cars in the 
system (both inside and outside the lot). In Sect. 3, matrix geometric analysis is applied 
[see (Neuts 1981; Hanukov et  al. 2018, 2017, 2018; Hanukov and Yechiali 2020)], 
and the system’s stability condition is determined, along with the system’s 2-dimen-
sional steady-state probabilities. Moreover, the entries of the so-called rate matrix R are 
directly calculated without applying the commonly used successive substitution pro-
cedure. Performance measures, such as the mean number of cars and mean number of 
buses, are calculated in Sect. 4. Numerical results are presented via graph in Sect. 5. 
The parking’s lot optimal size is calculated in Sect. 6, and equivalence of two charging 
methods used in parking lots is discussed. The question of whether or not to split the 
parking lot into two separate lots, one for cars, the other for buses, is investigated in 
Sect. 7. Conclusions are discussed in Sect. 8.
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2  The model

We consider a parking lot (PL) that accommodating two types of cars: private and 
buses. The number of available spaces is M (assumed even for simplicity), and 
the arrival processes of private cars and of buses are two independent Poisson 
processes with rates �C and �B , respectively. A private car occupies a single park-
ing spot, while a bus requires double parking spots. A bus enters the PL if and 
only if there are at least two empty spots, or leaves otherwise. This assumption is 
made partly by the practice of bus companies that prefer buses to move to other 
locations and complete service there, rather than letting buses park and wait for a 
future task in the area where they have just completed service. This assumption is 
also made for analytical reasons.

Private cars may queue and wait at the entrance of the PL if all M spaces are 
occupied. The net parking time of a car (bus) is a random variable, exponentially 
distributed with parameter �C ( �B , respectively), independent of each other. We 
assume that if a bus arrives and there are two or more empty spots, at least two 
of them are next to each other. This assumption is supported by the practice that 
cars may be moved from one spot to the other by the PL operator (this is a com-
mon practice in PL management where cars are moved from one place to another 
either by human operators or automatically). Furthermore, in order to utilize effi-
ciently the parking lot’s multi-use by both private cars and buses, the parking 
lot’s area can be partitioned by signs into two separate areas, such that buses will 
mostly park in one part, each bus occupying two spots, while private cars will 
mostly occupy the other part. In cases that one part is fully used, cars or buses are 
allowed to park in the other part. This arrangement will minimize the number of 
car movements within the lot, practically justifying our model assumption.

Another example for double-space parking is a container shipping company 
that operates a yard with a limited storage area. Standard shipping containers are 
8ft (2.44 m) wide, 8.5 ft (2.59 m) high and come in two lengths; 20ft (6.1 m) 
and 40ft (12.2 m). The former is commonly called twenty equivalent unit (TEU) 
container, while the latter is called forty equivalent unit (FEU) container. To store 
a TEU container, only a single-unit area is needed, whereas to store an FEU con-
tainer, two unit areas are required. It is relatively easy to move containers around, 
and therefore, whenever needed, TEU containers can be readily moved around, 
making room for a FEU container.

Formulation Consider the system in steady state. Let LB denote the number of 
buses actually parking in the lot, and let LC denote the total number of cars (park-
ing and queueing) in the system. The system’s state is defined as a two-dimen-
sional random vector ( LB, LC ). Let �i,j = P(LB = i, LC = j), (0 ≤ i ≤

M

2
, 0 ≤ j) 

denote the corresponding steady-state probabilities. Clearly, if 2i + j > M , then 
the number of cars queueing outside the PL is 2i + j −M . The system can be for-
mulated and analyzed as a continuous-time quasi-birth-and-death (QBD) process, 
as described in the sequel. The transition rate diagram of the system’s states is 
depicted in Fig. 1.
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3  Analysis: matrix geometric

The analysis of 2-dimensional quasi-birth-and-death (QBD) processes (such 
as the one depicted in Fig.  1) is thoroughly detailed in Neuts (1981). It ena-
bles matrix-type computation of the system’s state probabilities as will be 
described in the sequel. Another method to analyze such processes is by defin-
ing and using M∕2 + 1 probability generating function, each for every line in 
Fig.  1. This method requires the calculation of the roots between 0 and 1 of a 
given finite-dimensional matrix that its entries are composed from the sys-
tem’s parameter. In our problem, the use of matrix-geometric methods seems 
to be more efficient. For more details see, e.g., Hanukov and Yechiali (2020). 
Consequently, consider again the state space {(i, j)} denoting i buses and j cars 
in the system, 0 ≤ i ≤

M

2
, 0 ≤ j . When LB = i and LC = j , we say that the sys-

tem is in phase i and level j. By arranging the states in a lexicographic order, 
(0, 0), (1, 0),… , (

M

2
, 0);(0, 1), (1, 1),… , (

M

2
, 1);,… , (0,m), (1,m),… , (

M

2
,m);,… , (0,M + k),

(1,M + k),… , (
M

2
,M + k);… k = 0, 1, 2,… , the ’generator’ Q of the QBD process 

is given by

where the (M
2
+ 1) × (

M

2
+ 1) square matrices Bj,j,Bj,j−1, A0,A1 and A2 are given 

below:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0,0 A0 … 0 0 0 … 0

B1,0 B1,1 A0 0 0 0 … 0

0 ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 BM−1,M−2 BM−1,M−1 A0 0 … 0

0 … 0 A2 A1 A0 0 …

0 … 0 0 A2 A1 A0 0

⋮ … 0 0 0 ⋱ ⋱ ⋱

0 0 … ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0

1

1 j

i

LC

LB

m M

M-2m

M/2

M-1 M+1 M+k

λC 

λC λC 

λC 

λB 

λB 
λC 

λB 

λC 

λC 

λC 

λC 

λC 

jµC

mµC

mµC

MµC

mµC

MµC

iµBiµB

(M/2)µB

λB 
(M-2m)µB (M-2m)µB

(M/2)µB

λC 

iµB

(M-2i)µC

Fig. 1  Transition-rate diagram for ( LB,LC ): The states to the right of the dashed line indicate the states 
where cars are queueing at the entrance to the parking lot
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where 𝛼i,j = −(min{(M − 2i), j}𝜇C + 𝜆C + I{2i+j<M−1}𝜆B + i𝜇B), 0 ≤ i ≤
M

2
− 1, 1 ≤ j ≤ M − 2.

In particular,

where �i,0 = −(�C + �B + i�B), 0 ≤ i ≤
M

2
− 1.

where �i = −(min{(M − 2i),M − 1}�C + �C + i�B), 0 ≤ i ≤
M

2
.

where 0 ≤ i ≤
M

2
, 0 ≤ j ≤ M.

and

Bj,j =

⎡
⎢⎢⎢⎢⎢⎣

𝛼0,j 𝜆B 0 … 0

𝜇B 𝛼1,j ⋱ … 0

0 2𝜇B ⋱ I{2i+j<M−1}𝜆B ⋮

⋮ 0 ⋱ 𝛼M∕2−1,j 0

0 … 0
M

2
𝜇B − (𝜆C +

M

2
𝜇B)

⎤
⎥⎥⎥⎥⎥⎦

B0,0 =

⎡
⎢⎢⎢⎢⎢⎣

�0,0 �B 0 … 0

�B �1,0 �B … 0

0 2�B ⋱ ⋱ ⋮

⋮ 0 ⋱ �M∕2−1,0 �B

0 … 0
M

2
�B − (�C +

M

2
�B)

⎤
⎥⎥⎥⎥⎥⎦

BM−1,M−1 =

⎡
⎢⎢⎢⎢⎢⎣

�0 0 0 … 0

�B �1 0 … 0

0 2�B ⋱ ⋱ ⋮

⋮ 0 ⋱ �M∕2−1 0

0 … 0
M

2
�B �M∕2,j

⎤⎥⎥⎥⎥⎥⎦

Bj,j−1 =

⎡
⎢⎢⎢⎢⎣

min{M, j}�C 0 0 … 0

0 min{M − 2, j}�C 0 … 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 … min{2, j}�C 0

0 0 … 0 0

⎤⎥⎥⎥⎥⎦

A0 =

⎡
⎢⎢⎢⎢⎣

�C 0 0 0 …

0 �C 0 0 …

⋮ ⋮ ⋱ ⋱ ⋮

0 0 … �C 0

0 0 … 0 �C

⎤⎥⎥⎥⎥⎦

A2 =

⎡⎢⎢⎢⎢⎣

M�C 0 0 0 …

0 (M − 2)�C 0 0 …

⋮ ⋮ ⋱ ⋱ ⋮

0 0 … 2�C 0

0 0 … 0 0

⎤⎥⎥⎥⎥⎦
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By Neuts (1981), the generator Q satisfies

where 0̄ is a row vector with all its elements equal to zero, ē is a column vector with 
all its entries equal to 1, and p̄ = (p̄0, p̄1, p̄2,… p̄j,…), where

The ( M
2
+ 1)-dimensional probability vector p̄j denotes the phase probabilities when 

the system is in level j, presenting the states of column j in Fig. 1.
Consider now the matrix A = A0 + A1 + A2 , given by

The matrix A defines a one-dimensional absorbing birth-and-death Markovian pro-
cess that its transition-rate diagram is depicted in Fig.  2. This underlying process 
represents a zero-buffer M/M/M

2
 Markovian queue with arrival rate �B and M/2 paral-

lel servers, each serving at rate �B.
Let �̄� = (𝜋0,𝜋1,𝜋2,… ,𝜋M

2

) denote the invariant probability vector of A. Then �̄� sat-
isfies �̄�A = 0̄ , �̄�ē = 1 . This leads to �̄� = (1, 0,… , 0).

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−(M�C + �C) 0 0 0 …

�B − ((M − 2)�C + �C + �B) 0 0 …

0 2�B ⋱ ⋱ ⋮

⋮ 0 ⋱ − (2�C + �C + (
M

2
− 1)�B) 0

0 … 0
M

2
�B − (�C +

M

2
�B)

⎤⎥⎥⎥⎥⎥⎥⎦

p̄Q = 0̄, p̄ē = 1

p̄j = (p0j, p1j, p2j,… , pM

2
,j
), j ≥ 0.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 …

�B − �B 0 0 …

0 2�B − 2�B 0 ⋮

0 0 ⋱ ⋱ ⋮

⋮ 0 (
M

2
− 1)�B − (

M

2
− 1)�B) 0

0 … 0
M

2
�B −

M

2
�B

⎤⎥⎥⎥⎥⎥⎥⎦

0 1 2 3

µB 2µB 3µB (M/2-1)µB (M/2)µB

M/2-1 M/2

λ B λ B λ B λ B

Fig. 2  Transition-rate diagram for the matrix A
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The stability condition of the system (Neuts 1981) is �̄�A2ē > �̄�A0ē, which translates 
into

This follows since the bus processes regulate itself by the ’blocked and leave’ policy, 
while the car’s buffer is unlimited.

Remark 3.1 The stability condition follows directly from a recent result by Hanukov 
and Yechiali (2020), stating that if A0,A1 and A2 are each lower triangular, then the 
stability condition is given directly by a0,0

2
> a

0,0

0
 , where An = [a

ij
n] , n = 0, 1, 2.

From (Neuts 1981), the level probability vectors are given by

where R is the minimal non-negative solution of the matrix quadratic equation

Theorem 3.2 The matrix R = [rij] is given by

where 0 ≤ i, j ≤
M

2
.

Proof Since A0,A1 and A2 are lower triangular, it follows [see (Hanukov and Yechi-
ali 2020)] that the matrix R is also lower triangular. Hence, the elements of the 
matrix

are given by

(1)M𝜇C > 𝜆C.

p̄M+j = p̄MR
j j ≥ 0,

(2)A0 + RA1 + R2A2 = 0.

(3)rij =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[(M−2i)𝜇C+𝜆C+i𝜇B]−
√
[(M−2i)𝜇C+𝜆C+i𝜇B]

2−4𝜇C(M−2i)𝜆C

2𝜇C(M−2i)
j = i < M∕2,

𝜆C

𝜆C+(M∕2)𝜇B

j = i = M∕2

ri,j+1⋅(j+1)𝜇B+
i−1∑

k=j+1

rikrkj𝜇C(M−2j)

(M−2j)𝜇C(1−rii−rjj)+𝜆C+j𝜇B

j < i,

0 i < j,

C̃ = [̃cij] = A0 + RA1 + R2A2
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Now, using (2) and setting c̃ij = 0 , we obtain Eq. (3), with no need to apply the com-
monly used successive substitutions approach to calculate R. Other cases where 
the matrix R is determined explicitly can be found in Hanukov et al. (2018, 2017, 
2018).   ◻

The probability vectors p̄j for j = 0, 1, 2,… ,M are calculated by solving the 
following linear system of equations

together with the normalizing condition:

4  Performance measures

In this section we calculate the mean number of cars and the mean number of 
buses in the system.

The mean number of cars is given by

�cij =

⎧
⎪⎪⎨⎪⎪⎩

𝜆C − rii[(M − 2i)𝜇C + 𝜆C + i𝜇B] +
M∕2∑
k=0

rikrki𝜇C(M − 2i) j = i,

−rij[(M − 2j)𝜇C + 𝜆C + j𝜇B] + ri,j+1 ⋅ (j + 1)𝜇B +
M∕2∑
k=0

rikrkj𝜇C(M − 2j) j < i,

0 i < j,

=

⎧⎪⎨⎪⎩

𝜆C − rii[(M − 2i)𝜇C + 𝜆C + i𝜇B] + r2
ii
𝜇C(M − 2i) j = i,

−rij[(M − 2j)𝜇C + 𝜆C + j𝜇B] + ri,j+1 ⋅ (j + 1)𝜇B +
M∕2∑
k=0

rikrkj𝜇C(M − 2j) j < i,

0 i < j.

=

⎧⎪⎪⎨⎪⎪⎩

𝜆C − rii[(M − 2i)𝜇C + 𝜆C + i𝜇B] + r2
ii
𝜇C(M − 2i) j = i,

−rij[(M − 2j)𝜇C + 𝜆C + j𝜇B] + ri,j+1 ⋅ (j + 1)𝜇B +
i∑

k=j

rikrkj𝜇C(M − 2j) j < i,

0 i < j.

p̄0B00 + p̄1B10 = 0̄,

p̄0A0 + p̄1B11 + p̄2B21 = 0̄,

p̄1A0 + p̄2B22 + p̄3B32 = 0̄,

⋮

p̄M−2A0 + p̄M−1BM−1,M−1 + p̄MA2 = 0̄,

p̄M−1A0 + p̄MA1 + p̄MRA2 = 0̄,

(
M−1∑
j=0

p̄j + p̄M[I − R]−1

)
ē = 1.
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The sojourn time (waiting and parking) of a car in the system is denoted by WC . By 
Little’s law

The mean queueing time of a car outside the PL is

and the mean queue size of outside waiting cars is

The mean number of buses, E[LB] , is calculated as follows. Let 
z̄ = (0, 1, 2, 3,… ,

M

2
− 1,

M

2
)T be a column vector. Then, E[LB] is given by

Let LCI denote the number of cars inside the PL. Then

E[LC] =

M−1∑
j=0

j(p̄jē) +

∞∑
j=M

j(p̄jē)

=

M−1∑
j=1

j(p̄jē) +

∞∑
k=0

(M + k)(p̄M+kē)

=

M−1∑
j=1

j(p̄jē) +M

∞∑
k=0

(p̄M+kē) +

∞∑
k=0

k(p̄M+kē)

=

M−1∑
j=1

j(p̄jē) +Mp̄M(

∞∑
k=0

(Rk)ē + p̄M(

∞∑
k=0

(kRk)ē

=

M−1∑
j=1

j(p̄jē) +Mp̄M[I − R]−1ē + p̄M

(
[I − R]−2 − [I − R]−1

)
ē

=

M−1∑
j=1

j(p̄jē) + (M − 1)p̄M[I − R]−1ē + p̄M[I − R]−2ē.

E[WC] =
E[LC]

�C
.

E[W
q

C
] = E[WC] −

1

�C

E[L
q

C
] = �C[W

q

C
] = E[LC] −

�C

�C

E(LB) =

∞∑
j=0

p̄jz̄ =

M−1∑
j=0

p̄jz̄ +

∞∑
k=0

(p̄MR
k)z̄

=

M−1∑
j=0

p̄jz̄ + p̄M[I − R]−1z̄.
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On the other hand, also by Little’s law,

This follows since in steady state all cars eventually enter the PL and the mean 
sojourn time of a car in the PL is 1

�C

 . Clearly, E[Lq
C
] = E[LC] − E[LCI].

Let OCU denote the total number of parking spots occupied by both cars and 
buses. Then,

Another interesting measure is Ltotal , the virtual total number of parking spots that 
would have been occupied if one counts each queueing car outside the parking lot as 
occupying a spot. Then,

5  Numerical results

Figures 3, 4, 5 and 6 exhibit graphs showing the relative behavior of the above 
performance measures. Figure 3 depicts the values of 2E[LB] , E[LC] , E[LCI] and 
E[OCI] as functions of �C , for M = 8,�B = 1,�C = 1, �B = 2 . It is seen that, as 

(4)E[LCI] =

M

2∑
i=0

M−2i∑
j=0

jpi,j +

M

2∑
i=0

∞∑
j=M−2i+1

(M − 2i)pi,j.

E[LCI] =
�C

�C

.

E[OCU] = E[LCI] + 2E[LB].

E[Ltotal] = E[LC] + 2E[LB].

Fig. 3  Number of cars and buses as functions of �C when M = 8,�B = 1,�C = 1,�B = 2
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�C increases, so do E[LC] , E[LCI] , E[OCI] and E[Ltotal] , while 2E[LB] decreases. 
Clearly, when �C → M�C = 8 , E[OCI] approaches M = 8.

Figure 4 depicts the same performance measures as in Fig. 3, but as functions 
of �B , when �C = 4,�C = 1,�B = 1 . It is seen that E[LCI] =

�C

�C

= 4 is constant, 
independent of �B , while 2E[LB] approaches 4 when �B becomes large.

In Fig.  5, the changing parameter is �C . When �C increases, all measures 
decrease, except for 2E[LB] that increases to a maximum 2E[LB] = 4.

In Fig.  6, the independent parameter is �B . When it becomes large, 2E[LB] 
approaches zero (buses leave almost instantly after entering). As for the cars, the 

Fig. 4  Number of cars and buses as functions of �B when M = 8,�B = 1,�C = 1,�C = 4

Fig. 5  Number of cars and buses as functions of �C when M = 8 , �B = 1,�B = 2,�C = 4
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model becomes practically an M(�C)∕M(�C)∕8 system, so that, when M𝜇C >> 𝜆C , 
E[L

q

C
] is small and E[LC] → E[LCI] =

�C

�C

= 4.

6  Parking lot’s optimal size

It is clear that a too large, or a too small, PL size is very costly and non-econom-
ical. Consequently, in this section, we determine the optimal size of the PL under 
conventional economic assumptions. Assume that the utilities of a car and of a bus 
for using the parking lot are VC and VB , respectively. Let rC and rB denote the fixed 
entrance fee to the PL for a car, and for a bus, respectively. It is assumed that VC > rC 
and VB > rB . Let CC and CB , respectively, denote the waiting time cost rate for a car, 
or for a bus, in the system. Let dB denote the fixed loss for a bus that is blocked and 
balks, and let g be the cost per unit time for maintaining a single spot of the PL. The 
society overall objective is to determine the optimal PL size M∗ that maximizes the 
value of Z(M), where

and

(5)
Z(M) = {�C(VC − rC) + �B(1 − P(blocked bus))(VB − rB)

− E[LC]CC − E[LB]CB − �BP(blocked bus)dB − gM}.

(6)P(blocked bus) = 1 −

M

2
−1∑

i=0

M−2i−2∑
j=0

pi,j.

Fig. 6  Number of cars and buses as functions of �B when M = 8,�C = 1,�B = 2,�C = 4
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Note that �C(VC − rC) , as well as �B(VB − rB) , do not affect the optimal result of (5). 
Thus, the objective becomes

Equation (7) points at the dichotomy: high value of M decreases the values of 
P(blocked bus) and of E[LC] , but increases gM, whereas a small value of M increases 
both the blocking probability and E[LC] , but decreases gM.

Lemma 6.1 : ∀g > 0 , ∀M >
𝜆C

𝜇c

 , Z(M) has at least one global maximum.

Proof From (1), if M >
𝜆C

𝜇c

 , the queueing system is stable. Hence, ∀M >
𝜆C

𝜇c

 , Z(M) is 
finite. In addition, lim

M→∞
Z(M) = −∞ . So, Z(M) has at least one global maximum.  

 ◻

Figure 7 exhibits the effect of M on Z(M); Z(M) is an increasing function in 
the range from 6 to 12, gaining its maximal value at M∗ = 12 . Beyond that, Z(M) 
decreases monotonically.

Equivalence of a fixed charge entering fee and charging by sojourn time: 
Another common PL operating mode is to charge cars and buses as a function of 
their actual sojourn time in the PL. Let hC and hB , respectively, denote the charg-
ing rate (per unit of time) of a car and of a bus. Then, the overall objective is to 
find M∗ so has to

(7)
min
M

{Z1(M) = �BP(blocked bus))(VB − rB + dB) + E[LC]CC + E[LB]CB + gM}.

Fig. 7  Total profit as function of M when �C = 1 , �B = 1 , �B = 1 , �C = 4 , VC − rC = 60 , VB − rB = 60, 
CB = 40 , CC = 40 , g = 5 , dB = 5
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Examining Eq. (8), it is readily seen that hC
�C

 replaces rC in Eq. (5), and hB
�B

 replaces rB . 
That is, the two operating modes are practically equivalent depending only on the 
values rC versus hC

�C

 and rB versus hB
�B

.

7  To split or not?

We now investigate whether or not it is profitable to split the M-spot PL into two inde-
pendent and separate systems. The ’split or not’ question falls into the classical queue-
ing dilemma ’to pool or not’ (see e.g., Cao et al. (2020)). Moreover, . Yechiali (1977) 
compared the relative mean queueing time of a customer in the GI/M/s queue versus 
the mean queueing time of a customer in a corresponding system of s parallel GI/M/1 
queues. In particular, it is shown that the ratio between the latter and the former tends 
to infinity when the traffic intensity � tends to 0, and it approaches s when � goes to 1. 
Thus, it is clear that from pure queueing considerations, a single joint lot is better than 
two separate ones. However, when costs are involved, the picture may change.

Consider a PL with M parking spots. Suppose that the lot is split into two separate 
and independent lots with N ( N ≤ M ) parking spaces for cars and M−N

2
= K (assumed 

even) double spaces for buses. The corresponding independent arrival processes are 
Poisson, with rates �C and �B , respectively. Thus, the car lot is a M(�C)∕M(�C)∕N 
queueing system [with unbounded buffer). It is well known (Cooper 1981) page 97] 
that the conditional queueing (excluding service) time of a car, Wq

C
 , given that it has to 

queue, is exponentially distributed with mean 1

N�C−�C
 . That is,

The mean queue size of cars, E(Lq
C
) , mean queueing time, E(Wq

C
) , mean total sojourn 

time, E(WC) , and mean number of cars, E(LC) , in the system are given, respectively, 
by

where aC =
�C

�C

 and �C =
aC

N
 . Then,

(8)

max
M

{Z2(M) = [�CVC − �ChC
1

�C

+ �B(1 − P(blocked bus))VB

− �B(1 − P(blocked bus))hB
1

�B

− E[LC]CC − E[LB]CB − �BP(blocked bus)dB − gM]}.

[W
q

C
|Wq

C
> 0] ∼ exp(N𝜇C − 𝜆C).

E[L
q

C
] =

aN
C
⋅ �C

N!(1 − �C)
2

1

N−1∑
n=0

an
C

n!
+

aN
C

N!

1

1−�C

,

E[W
q

C
] =

1

�C
E(L

q

C
),

E[WC] =
1

�C
E(L

q

C
) +

1

�C

,
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On the other hand, the bus lot is a M(�B)∕M(�B)∕K∕K , finite space, blocked cus-
tomers cleared, queueing system. Then, with aB =

�B

�B

,

where P(blocked bus) is given by Erlang’s loss formula

Now, let

be the total reward value from the car lot, and

where P(blocked bus) , E[LC] and E[LB] are given, respectively, by Eqs. (11), (9) and 
(10). Given M, the objective function in this case is

where Z(M) is given by Eq. (5).
The solid line in Figures 8 and 9 depicts the total profit of the PL owner when the 

PL is split into N spots for cars and K =
M−N

2
 double spaces for buses, while the dashed 

line depicts the total profit of the PL owner when the PL is not split. Figure 8 demon-
strates a case when it is optimal to split.  In this case, the optimal solution is N = 4 
and K = 4 . In comparison with this, Fig. 9 demonstrates a case when it is optimal not 
to split. What makes the difference between the cases is the entrance fee rB . It follows 
that if rB is rather large, it is better not to split the parking lot, but allow more space for 
buses.

(9)E[LC] = E(L
q

C
) + aC.

(10)E[LB] =

K∑
i=1

ai
B

(i−1)!

K∑
i=0

ai
B

i!

,

E[WB] =
1

�B(1 − P(blocked bus))
E[LB].

(11)P(blocked bus) =

aK
B

K!

K∑
i=0

ai
B

i!

.

Z3(N) = �C(VC − rC) − E[LC]CC − gN

Z4(K) = �B(1 − P(blocked bus))(VB − rB) − E[LB]CB − �BP(blocked bus)dB − gK

(12)min{Z(M), min
N

{Z3(N) + Z4(M − N))}}
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8  Conclusion

A model for double-space parking of vehicles (e.g., buses) in a parking lot of finite 
size parking lot is investigated, where both buses and cars use the same lot. A car 
occupies a single spot, while a bus occupies double spots. Cars wait in line until 
entering the PL, but blocked buses leave the system. The probabilistic characteris-
tics of the resulting queueing system are analyzed, and various performance meas-
ures are calculated. It is further shown that, from the PL owner point of view, it is 
equivalent to either charge a fixed entrance fee or charge per unit of time usage. 
Finally, the optimal split of the PL into two separate and independent parking lots, 
one for cars only, the other for buses, is investigated and the optimal split is calcu-
lated numerically.

0

100

200

300

400

500

600

0 2 4 6 N

Total Profit

splitted

not splitted

Fig. 8  Total profit of a split parking lot as function of N when M  =  12, μc=1, μB=  1, λB=2,  λc =4, 
VC− rC=60, VB− rB= 300, CB = 40, CC 40, g = 5, dB = 5
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Fig. 9  Total profit of a split parking lot as function of N when M = 12, μc = 1, μB= 1, λB= 2,  λc = 4, 
VC− rC = 60, VB− rB =  600, CB = 40, CC 40, g = 5, dB = 5
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